Het Healthy Vaccinee Effect (HVE) wordt te vaak als een marginaal verschijnsel ingeschat en behandeld. In studies wordt het in Strengths and Weaknesses of in een voetnoot weggewerkt: “Er is niet gecorrigeerd voor het HVE, waardoor de cijfers voorzichtig moeten worden geïnterpreteerd” of woorden van gelijke strekking.
Het gaat dus pertinent niet om placebo- of nocebo-effecten (daar kun je hier meer over lezen). Psychologische effecten doen even niet mee. Het gaat puur om de statistische consequentie van ‘misclassificatie’: het overhevelen van mensen, die over niet al te lange termijn zullen overlijden, van de gevaccineerde naar de ongevaccineerde groep.
Met een eenvoudige, dus gesimplificeerde berekening kun je zelf experimenteren hoe het HVE-effect, hier gereduceerd tot het niet-vaccineren van mensen met slechte gezondheid en/of naderend levenseinde, gemakkelijk tot een respectabele vaccin-effectiviteit kan leiden, die in de praktijk wordt opgeteld bij het daadwerkelijke effect van een vaccin.
Bottom line
Zelfs met een niet-werkzaam vaccin, zoals hierboven, schiet de VE (vaccin-effectiviteit) al gauw omhoog. Tel je daar nog een vaccin dat in werkelijkheid 25% effectiviteit heeft bij op, dan kom je ook met lagere aannames al gauw richting de 80%, 90% effectiviteit.
Omgerekend naar levensjaren wordt het beeld werkelijk dramatisch want veel ziektes treffen vooral de kwetsbare ouderen, terwijl de hele bevolking aan mogelijke vaccinbijwerkingen wordt blootgesteld.
Het is onbestaanbaar dat onderzoekers dit niet weten. Observationele vaccinstudies die niet hun uiterste best doen om voor het HVE te corrigeren, hebben als doel de resultaten te flatteren. Een andere optie dan moedwilligheid zie ik niet.
Addendum: het wrijven in de vlek
Moedwil of misverstand? Er zijn studies waarin het HVE wordt onderkend en geadresseerd op een manier die opnieuw getuigt van ofwel gebrek aan statistisch inzicht ofwel bewust oppoetsen van onwelgevallige data, namelijk het weglaten van de eerste weken na de prik. Zo wordt het ene artefact vervangen door het andere: HVE eruit, Time Related Bias erin..
1. Bar-On et al., 2022 (NEJM) — Protection by a Fourth Dose…
- Discussion: “We attempted to address this bias by excluding the first 7 days after vaccination from the analysis."
https://www.nejm.org/doi/full/10.1056/NEJMoa2201570
2. Tartof et al., 2021 (The Lancet) — Effectiveness of mRNA BNT162b2 up to 6 months
- Limitations: “Limitations include the observational design, possible residual confounding, and healthy vaccinee bias, which we attempted to minimize by excluding person-time during the first week after each dose."
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02183-8/fulltext
3. Patalon et al., 2022 (Nature Communications) — Waning Effectiveness of the Third Dose of BNT162b2
- Methods/Discussion (samengevatte kernzin): “We minimized [healthy vaccinee] bias by excluding the first 7 days post-vaccination from our analysis.”
https://www.nature.com/articles/s41467-022-30884-6
4. Dagan et al., 2021 (NEJM) — BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting
- Discussion: “Limitations include unmeasured confounding and possible selection bias. Healthy vaccinee bias may play a role in the early post-vaccination period, but we addressed this by excluding person-time during the first 7 days after the first dose."
https://www.nejm.org/doi/full/10.1056/NEJMoa2101765
5. Jackson et al., 2013 (Vaccine) — Influenza vaccine effectiveness in seniors estimated using different methods
- Discussion: “We observed that vaccinated seniors had lower risk of death and hospitalization even before influenza circulation began … To reduce the impact of this bias, we excluded outcomes that occurred during the first 14 days after vaccination. After this exclusion, effectiveness estimates were closer to expected values, but residual confounding is still possible.”
https://pubmed.ncbi.nlm.nih.gov/24095882/

Bij de leeftijden van 70-80 jaar zien we een vaccinatiegraad van 93%. Goed beschermd, goede opkomst.
Echter …. bij 90+ zien we slechts een vaccinatiegraad van 84%. Meer dan 2 maal zoveel ongevaccineerd. Dat riekt naar “te zwak om nog te vaccineren”. Dat zijn 18.500 ongevaccineerde overlijdens. Totaal overleden is 27.000. Dus 2/3 van de ouderen die overleden was ongevaccineerd. Dat hoeven niet persé dezelfden te zijn, maar wel een sterke aanwijzing
Dat betekent dus een veel hoger verwachtingspercentage en ook een veel hoger werkelijk sterftepercentage in die groep, waardoor de VE waarschijnlijk richting de 100% loopt. Maar deze calculator werkt niet leeftijdsspecifiek helaas. Dan zou je zelf per leeftijd achtergrondpercentages en verwachtingen moeten invullen. Deze post werd per ongeluk gepubliceerd, ik had hem eerst nog eens met je door willen nemen. Maar zo kan het ook.
Je haalt eigenlijk 2 dingen door elkaar.
Waar al het gedoe met Ronald Meester en Herman over gaat zijn “achteraf studies”. Dan heb je met HVE te maken en is de effectiviteit etc. heel erg lastig vast te stellen. Omdat de gevaccineerden andere kenmerken hebben dan de niet gevaccineerden zoals je in je artikel correct aangeeft: bij de niet gevaccineerden zitten relatief veel mensen die al snel gaan sterven. Maar achteraf is dat verdraaid lastig vast te stellen.
Wat had gemoeten (en dat is ook wel half gedaan door o.a. Pfizer) is en RCT (https://www.scribbr.nl/onderzoeksmethoden/randomized-controlled-trial/ ).
Dan zijn de 2 groepen wel echt random en heb je helemaal geen last van HVE. En dan kun je zuiver de effectiviteit en bijwerkingen/sterfte meten. Maar om (mogelijk sinistere) onverklaarbare redenen heeft Pfizer die controle groep halverwege alsnog helemaal gevaccineerd. Weg zuivere meting.
Je haalt dit denk ik door elkaar met RCT’s. Dit gaat louter over observationeel achteraf-onderzoek: “Het HVE-probleem ontstaat als we op een vaccinatiecampagne terugkijken en een groep gevaccineerden willen vergelijken met een groep ongevaccineerden. Bij een goed opgezette trial zijn die groepen ‘gematched’: ze lijken op elkaar qua samenstelling: leeftijd, gewicht, geslacht, gezondheidsstatus etc.” Of begrijp ik je verkeerd?
(gematcht moet eigenlijk gerandomiseerd zijn)
Klopt hoor.
We zouden eigenlijk moeten eisen dat RCT’s gedaan worden (de gouden standaard). Omdat die “achteraf” onderzoeken per definitie onnauwkeurige en vooral te optimistische uitkomsten hebben.
Ik snapte daarom niet zo goed wat je met dit artikel wilde. Want over dat HVE zijn echt al heel veel duidelijke artikelen met goede uitleg gepubliceerd. Ook op VirusVaria.
Maar goed. Nu Pfizer zijn RCT na een half jaar al heeft verprutst, zullen we wel moeten. En misschien zijn er nog mensen die dit nog niet weten. En kan jouw uitleg met getallen dit voor hen verduidelijken…..
Het was mijn bedoeling om te laten zien dat het, zeker bij een hoge vaccinatiegraad, in enorme verschillen ontaardt. Het scheelt niet een procentje of twee, het kan zó 50% en meer zijn. En dat enorme effect wordt bijna nergens geadresseerd, behalve met een disclaimer in de strengths en weaknesses: ‘de werkelijke effectiviteit kan hierdoor afwijken’, dat soort formulieringen, alsof het iets marginaals is.
Bij een RCT horen de beide groepen trouwens ongeveer even groot te zijn, dan speelt het al veel minder.
Aha, bij mij valt nu pas het kwartje.
Je wilde laten zien dat door het HVE zelfs een totaal, zelfs psychologisch, onwerkzaam placebo, achteraf gemeten, een VE van 50 – 80% heeft. [N.B. Een placebo werkt echt dankzij psychologische effecten op de patiënt. Daar is veel onderzoek naar gedaan.).
Dat is bij mij niet direct aangekomen (ligt dat aan mij of toch aan de tekst?). Ik zou de titel en de openingszinnen dus aanpassen.
Bij een RCT hoeven de groepen helemaal niet even groot te zijn. Als ze maar echt random zijn (en daardoor dus onderling volkomen vergelijkbaar). Voor “echt random” is wel een voldoende omvang vereist; maar geen identieke omvang.
Om de boodschap nog te versterken zou ik 5 scenario’s schetsen:
1. een hoge vaccinatiegraad onder de (totale) bevolking vanaf bijv. ca. 18 jaar. Dan is het HVE beperkt.
2. een hoge vaccinatiegraad onder alleen de 60+ bevolking (zoals bij de griepprik en nu de Corona prik); dan “explodeert” het HVE. En dus de HVE als je alleen retrospectief onderzoek doet.
3. en expliciet laten zien dat het HVE exponentieel toeneemt met de vaccinatiegraad binnen één bepaalde doelgroep.
4. Illustreren dat het HVE in een inhomogene populatie kan leiden tot Simpson’s Paradox: de overall VE lijkt positief, maar dit maskeert dat de VE in verschillende leeftijdsgroepen sterk kan variëren. Bijvoorbeeld: een schijnbaar hoge overall VE van 70% kan bestaan uit een VE van 90% bij 18-50 jarigen (die sowieso zeer laag risico hadden) en een VE van slechts 20% of zelfs negatief bij 70+ (waar het vaccin het meest nodig was). Het HVE versterkt dit effect omdat binnen elke leeftijdsgroep de meest kwetsbaren ondervertegenwoordigd zijn bij de gevaccineerden.
5. Demonstreren dat bij groepen met zeer laag baseline-risico (zoals jongeren) een schijnbaar hoge VE kan maskeren dat het vaccin netto schadelijk is. Bijvoorbeeld: als jongeren een baseline-risico hebben van 0,01% voor ernstige ziekte, kan een vaccin met 80% VE dit reduceren naar 0,002% – een ‘indrukwekkende’ relatieve risicoreductie. Maar als diezelfde jongeren 0,05% kans hebben op ernstige bijwerkingen, dan is de absolute schade (0,05%) veel groter dan de absolute bescherming (0,008%). Het HVE versterkt dit probleem omdat de gezondste jongeren zich laten vaccineren, waardoor hun al lage baseline-risico nog verder onderschat wordt.
Dit illustreert waarom absolute risicoreductie en number needed to treat/harm cruciale metrics zijn, vooral bij lage-risico populaties waar indrukwekkende relatieve cijfers een negatieve schade-baten balans kunnen verhullen.
Aardig op te merken is dat als er een verschil in VE is tussen verschillende leeftijdsgroepen, het resultaat van berekeningen volledig de mist in gaat. We zijn bezig met een binnenkort te verschijnen artikel, waarin we een betere methode voor het berekenen van vaccinatiegraad en VE presenteren. Als je bv uitgaat van een VE voor jongeren van 0% en ouderen van 33%, dan komt de VE voor de gehele populatie uit op -44% (in ons voorbeeld). Uiterst merkwaardig deze negatieve waarde, maar het is zo. Met onze methode komen we wel uit op een realistische waarde: 26%.
Dat ga ik met rode oortjes lezen!!!
Ik heb nu in de intro aangegeven dat dit niet over het placebo- of nocebo-effect gaat. Dat heb ik ook eerder al vrij uitgebreid behandeld: m.b.t. populatie, artsen/protocollen/ en psycho-somatisch.
Goede aanvulling dus!
Ik heb vaak gezien dat een controlegroep een stuk kleiner is dan de testgroep. Ik begrijp nu wat beter waarom, zoals je uit de calculator kunt opmaken.
Als een controlegroep alleen maar ‘voldoende groot’ hoeft te zijn, waarom is de testgroep dan groter? Wat is daar de statistische rationale achter? Om eerder significantie aan te tonen misschien?
Een controle-groep die aanzienlijk kleiner is dan de testgroep, veroorzaakt een hefboom-effect bij het overhevelen van wel- naar niet-gevaccineerd. Bij 1/4 controle- en 3/4 testgroep, levert elke procent overheveling een vermindering op van 1/75% bij de testgroep, plus een 3x zo grote sterftevermeerdering van 1/25% bij de controle. Maar dat effect kun je dus makkelijk bekijken in de calculator.
De toelichting en verfijningen die je verder geeft, geven voldoende stof voor een syllabus 🙂 Deze calculator probeer ik voor nu toegankelijk en begrijpelijk te houden, met alleen de hoogst noodzakelijke parameters. En vooral: in lijn met hoe het publiek over HVE wordt geïnformeerd. Als er al over wordt gerept…
Dank voor je input weer Jan!
ja zo is het crystal clear!
In punt 3 onder ‘Over de default waarden’ lees ik ‘gevaccineerden’ waar, naar ik vermoed, ‘ongevaccineerden’ bedoeld is.
Onder ‘De twee moeilijkste’ lees ik: ‘(0,4% = de helft van de werkelijke sterfte van die maand zie je aankomen)’ – Hoebedoelu? Voor mij is het wartaal. Vervolgens ‘alk’ i.p.v. ‘al’, een begrijpelijke typo.
Wat de laatste vraag betreft: mij dunkt dat er in drie maanden meer kwetsbaren sterven dan 3x de dooie kwetsbaren van één maand, omdat die ene maand de ‘eerste’ maand is. Wanneer op dag 0 bijv. 100 mensen de prognose ‘Ik geef u nog hooguit een half jaar” krijgen, lijkt het aannemelijker dat er daarvan na één maand misschien 3, na twee maanden 11 en na drie maanden 28 enz. dood zijn dan dat er iedere maand een stuk of 15 dooien bijkomen. De gegevens om voor zoiets een werkbare functie te formuleren lijken me moeilijk te verwerven …
Dank voor de verbeteringen, inderdaad: juist de NIET-gevaccineerden. En alk => al.
[aangepaste reactie omdat de calculator is aangepast, AT]
De werkelijke sterfte per maand is 0,8% van de populatie. Van hoeveel daarvan kan zorgpersoneel of een arts dat voorzien? De helft? Dan krijgt die 0,4% geen prik, dat bedoel ik.
Het zijn inderdaad complexe afwegingen. Want wanneer ga je prikken? Als iemand nog een half jaar heeft? Of al bij 3 maanden? Jij noemt zes maanden. Waarom zouden er de eerste maand maar 3 bij komen en later meer? Het sterftepercentage is elke maand hetzelfde. Het gaat om de juistheid van de inschatting per individu.
Maar eigenlijk is het punt dat je bij enigszins plausibele schattingen al gauw op 50% tot 80% VE zit. Het is geen randverschijnsel; het is een belangrijke factor die bij veel onderzoeken gewoon bij de echte VE wordt gerekend. HVE wordt ‘vergeten’.
Dat is een goede Ansatz en de ingebouwde rekenmachine is heel mooi en nuttig (ik ben de berekeningen nog niet nagegaan).
Wat op mij verwarrend over kwam: VE geeft gewoonlijk aan hoe goed een vaccin tegen een bepaalde ziekte beschermd, zie bijvoorbeeld https://www.sciencedirect.com/topics/immunology-and-microbiology/vaccine-efficacy. HVE wordt meestal genoemd bij vergelijkingen van sterfte aan alle oorzaken en dat is ook waar je hier naar kijkt. Wel wordt in recente studies ook de term VE tegen alle doodsoorzaken gebruikt; het zou zeker voor occasional readers verhelderend werken om dat aspect te verduidelijken en het ook zo te specifieren in dit artikel.
Dank Harald. Het is inderdaad complex. In werkelijkheid loopt het ook door elkaar:
– HVE speelt net zo goed bij het (achteraf) meten van bescherming tegen een ziekte. Als iemand met een auto-immuunprobleem niet wordt gevaccineerd, komt hij/zij ook bij de ongevaccineerden met een véél grotere kans op ziek worden.
– Als iemand overlijdt, is het dan aan de ziekte of aan onderliggend lijden?
– Volgens rapporten (NIVEL, RIVM) hebben de vaccinaties ook een gunstig effect op alle doodsoorzaken.
Bij het meten van effect op een ziekte komen nog veel meer verstorende effecten. Wanneer is iemand ‘ziek’? Bij een positieve test? Bij bepaalde antistoffen? Doktersbezoek, ziekenhuisopname? Is iedereen wel op dezelfde mate blootgesteld aan het pathogeen (seizoen, locatie)?
‘Overleden of niet’ is wat dat betreft een hardere parameter die al die onzekerheden uitsluit, dus ook beter geschikt voor het bekijken van het ‘droge’ HVE-effect.
Het valt voor mij buiten de scope van dit artikel. Ik wilde onderzoeken of het HVE geen marginaal effect is, zeker bij een hoge vaccinatiegraad (dat was mijn intuïtie). Ik zie dat een overschatting van tientallen procenten bijna onontkoombaar is en met wat goede (of kwade) wil kom je tot echt hoge bescherming van 80% of meer. Met een placebo…
Ik ben geen wiskundige en weet niets van kansrekening. Mijn verwachting was nattevingerwerk, gebaseerd op de volgende redenatie: als een arts een kwantum mensen nog hooguit een half jaar geeft, zal het aantal gevallen waarin hij gelijk heeft toenemen met de tijd. Nu ik erover nadenk, zie ik dat het waarschijnlijk onzin is. Wel is het waarschijnlijk zo, dat de prognose na zes maanden controleerbaar nauwkeuriger is dan na één maand, maar dat zegt natuurlijk niets over het tijdstip binnen die zes maanden waarop de doden vallen. Het wemelt ook nog eens van de subjectieve factoren. Nutteloze onzin, kortom, en, zoals je terecht opmerkt: het doet er niet veel toe. Wat je weten wilt is: totaal aantal onbespoten doden in een bepaalde periode, en het percentage van die doden dat onbespoten is wegens zwakke conditie of geringe levensverwachting – meer niet. Twee bundels gegevens, die allebei vervuild zijn en nauwelijks te achterhalen: het eerste, simpele gegeven (aantal onbespoten doden) door de verziekte registratie (pas twee tot vier weken na de spuit geboekstaafd als bespoten), het tweede doordat de motieven voor niet-prikken zich in de hoofden van artsen en dode patiënten bevinden. Duizend nabestaanden enquêteren? Onbegonnen werk. Wat overblijft zijn een paar objectieve criteria: leeftijd, ziekenhuisopname, verblijf in bejaardentehuis, dementie – van die dingen.
Daarom ben ik begonnen met 1 maand. Dat maakt de impact van het effect duidelijk. Hoe langer de periode, hoe moeilijker – en hoe lager het effect, dat zie je ook in de Kaplan-Meier curves. Er wordt niet meer voorspeld, hoe langer termijn is.
Ik heb het enorm versimpeld nu. Heb je een berichtje gekregen net, over dat ik een comment had geplaatst hierboven?
Ja!
In dit opiniestuk lees ik voor het eerst de omgekeerde HVE…
https://www.trouw.nl/opinie/nee-coronavaccins-veroorzaken-geen-kanker~bf5e785e/
Best aardig stuk! Alleen zegt hij “daarbij is er geen enkel mechanisme bekend dat ten grondslag zou liggen aan dit denkbeeldige risico.” Dat klopt natuurlijk niet. Dat mechanisme is er wel, meerdere zelfs, alleen weet nog niemand hoe vaak het daadwerkelijk gebeurt.
Maar als het totaal aantal kankerdiagnoses inderdaad niet is gestegen zoals hij zegt (maar misschien klopt dat ook niet, weet ik niet) lijkt er inderdaad iets mis.
Toch even opgezocht. Het aantal kankerdiagnoses is in 2021 met 10% gestegen gestegen en blijft min of meer op dat niveau. Er is meer over te zeggen (de dip in 2020 en zo). De laatste jaren zijn verwachtingen, geen observaties. Maar dat ze die verwachting zo hoog inzetten zegt genoeg.

Dat idee is niet nieuw, al snel werd bij vaccineren van jongere risicogroepen toegegeven (in England als ik me goed herinner) dat die in verhouding meer overleden, maar dat werd volledig afgeschoven op hun slechtere gezondheid voor het prikken.
Overigens is in veel landen het aantal diagnoses van bepaalde soorten kankers wel degelijk significant toegenomen, en er zijn ook artikels gepubliceerd die uitleggen hoe dat kan als gevolg van vaccinatie.